Back to Search
Start Over
Charge transport and structure in semimetallic polymers
- Source :
- Rudd , S , Franco-Gonzalez , J F , Kumar Singh , S , Ullah Khan , Z , Crispin , X , Andreasen , J W , Zozoulenko , I & Evans , D 2017 , ' Charge transport and structure in semimetallic polymers ' , Journal of Polymer Science. Part B, Polymer Physics , vol. 56 , no. 1 , pp. 97-104 .
- Publication Year :
- 2017
-
Abstract
- Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm2/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices.
Details
- Database :
- OAIster
- Journal :
- Rudd , S , Franco-Gonzalez , J F , Kumar Singh , S , Ullah Khan , Z , Crispin , X , Andreasen , J W , Zozoulenko , I & Evans , D 2017 , ' Charge transport and structure in semimetallic polymers ' , Journal of Polymer Science. Part B, Polymer Physics , vol. 56 , no. 1 , pp. 97-104 .
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1280588969
- Document Type :
- Electronic Resource