Back to Search Start Over

Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2

Authors :
Koemets, E.
Leonov, I.
Bykov, M.
Bykova, E.
Chariton, S.
Aprilis, G.
Fedotenko, T.
Clément, S.
Rouquette, J.
Haines, J.
Cerantola, V.
Glazyrin, K.
McCammon, C.
Prakapenka, V. B.
Hanfland, M.
Liermann, H. -P.
Svitlyk, V.
Torchio, R.
Rosa, A. D.
Irifune, T.
Ponomareva, A. V.
Abrikosov, I. A.
Dubrovinskaia, N.
Dubrovinsky, L.
Koemets, E.
Leonov, I.
Bykov, M.
Bykova, E.
Chariton, S.
Aprilis, G.
Fedotenko, T.
Clément, S.
Rouquette, J.
Haines, J.
Cerantola, V.
Glazyrin, K.
McCammon, C.
Prakapenka, V. B.
Hanfland, M.
Liermann, H. -P.
Svitlyk, V.
Torchio, R.
Rosa, A. D.
Irifune, T.
Ponomareva, A. V.
Abrikosov, I. A.
Dubrovinskaia, N.
Dubrovinsky, L.
Source :
Phys Rev Lett; Physical Review Letters
Publication Year :
2021

Abstract

Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe2O3 and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites. © 2021 American Physical Society.

Details

Database :
OAIster
Journal :
Phys Rev Lett; Physical Review Letters
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1280536435
Document Type :
Electronic Resource