Back to Search
Start Over
Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and µ-CT structural studies
- Publication Year :
- 2020
-
Abstract
- Commercial synthetic open-cell foams are an alternative to human cadaveric bone to simulate in vitro different scenarios of bone infiltration properties. Unfortunately, these artificial foams do not reproduce the anisotropic microstructure of natural bone and, consequently, their suitability in these studies is highly questionable. In order to achieve scaffolds that successfully mimic human bone, microstructural studies of both natural porous media and current synthetic approaches are necessary at different length scales. In this line, the present research was conducted to improve the understanding of local anisotropy in natural vertebral bone and synthetic bone-like porous foams. To attain this objective, small volumes of interest within these materials were reconstructed via micro-computed tomography. The anisotropy of the microstructures was analysed by means of both their main local histomorphometric features and the behaviour of an internal flow computed via computational fluid dynamics. The results showed that the information obtained from each of the micro-volumes of interest could be scaled up to understand not only the macroscopic averaged isotropic and/or anisotropic behaviour of the samples studied, but also to improve the design of macroscopic porous implants better fitting specific local histomorphometric scenarios. The results also clarify the discrepancies in the permeability obtained in the different micro-volumes of interest analysed. Statement of significance: A deep insight comparative study between the porous microstructure of healthy ver-tebral bone and that of synthetic bone-like open-cell rigid foams used in in vitro permeability studies of bone cement has been performed. The results obtained are of fundamental relevance to computational studies be-cause, in order to achieve convergence values, the computation process should be limited to small computation domains or micro-volumes of interest. This makes the results specific spatial dependent<br />Peer Reviewed<br />Postprint (author's final draft)
Details
- Database :
- OAIster
- Notes :
- 12 p., application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1280136365
- Document Type :
- Electronic Resource