Back to Search
Start Over
Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1 alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats
- Source :
- Diabetologia vol.53 (2010) nr.9 p.2008-2019 [ISSN 0012-186X]
- Publication Year :
- 2010
-
Abstract
- Aims/hypothesis Reductions in peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1 alpha) levels have been associated with the skeletal muscle insulin resistance. However, in vivo, the therapeutic potential of PGC-1 alpha has met with failure, as supra-physiological overexpression of PGC-1 alpha induced insulin resistance, due to fatty acid translocase (FAT)-mediated lipid accumulation. Based on physiological and metabolic considerations, we hypothesised that a modest increase in PGC-1 alpha levels would limit FAT upregulation and improve lipid metabolism and insulin sensitivity, although these effects may differ in lean and insulin-resistant muscle. Methods Pgc-1 alpha was transfected into lean and obese Zucker rat muscles. Two weeks later we examined mitochondrial biogenesis, intramuscular lipids (triacylglycerol, diacylglycerol, ceramide), GLUT4 and FAT levels, insulin-stimulated glucose transport and signalling protein phosphorylation (thymoma viral proto-oncogene 2 [Akt2], Akt substrate of 160 kDa [AS160]), and fatty acid oxidation in subsarcolemmal and intermyofibrillar mitochondria. Results Electrotransfection yielded physiologically relevant increases in Pgc-1 alpha (also known as Ppargc1a) mRNA and protein (similar to 25%) in lean and obese muscle. This induced mitochondrial biogenesis, and increased FAT and GLUT4 levels, insulin-stimulated glucose transport, and Akt2 and AS160 phosphorylation in lean and obese animals, while bioactive intramuscular lipids were only reduced in obese muscle. Concurrently, PGC-1 alpha increased palmitate oxidation in subsarcolemmal, but not in intermyofibrillar mitochondria, in both groups. In obese compared with lean animals, the PGC-1 alpha-induced improvement in insulin-stimulated glucose transport was smaller, but intramuscular lipid reduction was greater. Conclusions/interpretations Increases in PGC-1 alpha levels, similar to those that can be induced by physiological stimuli, altered intramuscula
Details
- Database :
- OAIster
- Journal :
- Diabetologia vol.53 (2010) nr.9 p.2008-2019 [ISSN 0012-186X]
- Notes :
- DOI: 10.1007/s00125-010-1773-1, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1280126646
- Document Type :
- Electronic Resource