Back to Search Start Over

Motions around conserved helical weak spots facilitate GPCR activation

Authors :
Bibbe, Janne M.
Vriend, G.
Bibbe, Janne M.
Vriend, G.
Source :
Proteins-Structure Function and Bioinformatics; 1577; 1586; 0887-3585; 11; vol. 89; ~Proteins-Structure Function and Bioinformatics~1577~1586~~~0887-3585~11~89~~
Publication Year :
2021

Abstract

Item does not contain fulltext<br />G protein-coupled receptors (GPCRs) participate in most physiological processes and are important drug targets in many therapeutic areas. Recently, many GPCR X-ray structures became available, facilitating detailed studies of their sequence-structure-mobility-function relations. We show that the functional role of many conserved GPCR sequence motifs is to create weak spots in the transmembrane helices that provide the structural plasticity necessary for ligand binding and signaling. Different receptor families use different conserved sequence motifs to obtain similar helix irregularities that allow for the same motions upon GPCR activation. These conserved motions come together to facilitate the timely release of the conserved sodium ion to the cytosol. Most GPCR crystal structures could be determined only after stabilization of the transmembrane helices by mutations that remove weak spots. These mutations often lead to diminished binding of agonists, but not antagonists, which logically agrees with the fact that large helix rearrangements occur only upon agonist binding. Upon activation, six of the seven TM helices in GPCRs undergo helix motions and/or deformations facilitated by weak spots in these helices. The location of these weak spots is much more conserved than the sequence motifs that cause them. Knowledge about these weak spots helps understand the activation process of GPCRs and thus helps design medicines.

Details

Database :
OAIster
Journal :
Proteins-Structure Function and Bioinformatics; 1577; 1586; 0887-3585; 11; vol. 89; ~Proteins-Structure Function and Bioinformatics~1577~1586~~~0887-3585~11~89~~
Publication Type :
Electronic Resource
Accession number :
edsoai.on1277004937
Document Type :
Electronic Resource