Back to Search Start Over

Event reconstruction for KM3NeT/ORCA using convolutional neural networks

Authors :
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
European Commission
Junta de Andalucía
GENERALITAT VALENCIANA
Deutsche Forschungsgemeinschaft
Agencia Estatal de investigación
Institut Universitaire de France
National Science Centre, Polonia
European Regional Development Fund
Instituto Nazionale di Fisica Nucleare
Agence Nationale de la Recherche, Francia
Shota Rustaveli National Science Foundation
Netherlands Organization for Scientific Research
Ministerio de Ciencia, Innovación y Universidades
National Authority for Scientific Research, Rumanía
General Secretariat for Research and Technology, Grecia
Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona
Ministero dell'Istruzione dell'Università e della Ricerca, Italia
Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos
Aiello, S.
Albert, A.
Garre, S. Alves
Aly, Z.
Ameli, F.
Andre, M.
Androulakis, G.
Anghinolfi, M.
Anguita, M.
Anton, G.
Ardid Ramírez, Miguel
Aublin, J.
Bagatelas, C.
Barbarino, G.
Baret, B.
Diego-Tortosa, D.
Espinosa Roselló, Víctor
Martínez Mora, Juan Antonio
Poirè, Chiara
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
European Commission
Junta de Andalucía
GENERALITAT VALENCIANA
Deutsche Forschungsgemeinschaft
Agencia Estatal de investigación
Institut Universitaire de France
National Science Centre, Polonia
European Regional Development Fund
Instituto Nazionale di Fisica Nucleare
Agence Nationale de la Recherche, Francia
Shota Rustaveli National Science Foundation
Netherlands Organization for Scientific Research
Ministerio de Ciencia, Innovación y Universidades
National Authority for Scientific Research, Rumanía
General Secretariat for Research and Technology, Grecia
Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona
Ministero dell'Istruzione dell'Università e della Ricerca, Italia
Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos
Aiello, S.
Albert, A.
Garre, S. Alves
Aly, Z.
Ameli, F.
Andre, M.
Androulakis, G.
Anghinolfi, M.
Anguita, M.
Anton, G.
Ardid Ramírez, Miguel
Aublin, J.
Bagatelas, C.
Barbarino, G.
Baret, B.
Diego-Tortosa, D.
Espinosa Roselló, Víctor
Martínez Mora, Juan Antonio
Poirè, Chiara
Publication Year :
2020

Abstract

[EN] The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1273092080
Document Type :
Electronic Resource