Back to Search
Start Over
An optimal multitier resource allocation of cloud RAN in 5G using machine learning
- Publication Year :
- 2019
-
Abstract
- The networks are evolving drastically since last few years in order to meetuser requirements. For example, the 5G is offering most of the available spec-trum under one umbrella. In this work, we will address the resource allocationproblem in fifth-generation (5G) networks, to be exact in the Cloud Radio AccessNetworks (C-RANs). The radio access network mechanisms involve multiplenetwork topologies that are isolated based on the spectrum bands and it shouldbe enhanced with numerous access technology in the deployment of 5G net-work. The C-RAN is one of the optimal technique to combine all the availablespectral bands. However, existing C-RAN mechanisms lacks the intelligence per-spective on choosing the spectral bands. Thus, C-RAN mechanism requires anadvanced tool to identify network topology to allocate the network resources forsubstantial traffic volumes. Therefore, there is a need to propose a frameworkthat handles spectral resources based on user requirements and network behav-ior. In this work, we introduced a new C-RAN architecture modified as multitierHeterogeneous Cloud Radio Access Networks in a 5G environment. This archi-tecture handles spectral resources efficiently. Based on the simulation analysis,the proposed multitier H-CRAN architecture with improved control unit innetwork management perspective enables augmented granularity, end-to-endoptimization, and guaranteed quality of service by 15 percentages over theexisting system.
Details
- Database :
- OAIster
- Notes :
- text, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1267395007
- Document Type :
- Electronic Resource