Back to Search
Start Over
Omega-3 fatty acids and vitamin D in immobilisation: Part B- modulation of muscle functional, vascular and activation profiles
- Publication Year :
- 2016
-
Abstract
- Objectives: This study set out to determine whether two potential protein-sparing modulators (eicosapentaenoic acid and vitamin D) would modulate the anticipated muscle functional and related blood vessels function deleterious effects of immobilisation. Design: The study used a randomised, double-blind, placebo-controlled design. Setting: The study took part in a laboratory setting. Participants: Twenty-four male and female healthy participants, aged 23.0±5.8 years. Intervention: The non-dominant arm was immobilised in a sling for a period of nine waking hours a day over two continuous weeks. Participants were randomly assigned to one of three groups: placebo (n=8, Lecithin, 2400 mg daily), omega-3 (-3) fatty acids (n=8, eicosapentaenoic acid (EPA); 1770 mg, and docosahexaenoic acid (DHA); 390 mg DHA, daily) or vitamin D (n=8, 1,000 IU daily). Measurements: Isometric and isokinetic torque, antagonist muscle co-contraction (activation profile), muscle fatigability indices, and arterial resting blood flow were measured before, at the end of the immobilisation period, and two weeks after re-mobilisation. Results: Muscle elbow flexion and extension isometric and isokinetic torque decreased significantly with limb immobilisation in the placebo group (P<0.05). Despite no significant effect of supplementation, -3 and vitamin D supplementation showed trends (P>0.05) towards attenuating the decreases observed in the placebo group. There was no significant change in muscle fatigue parameters or co-contraction values with immobilisation and no effect of supplementation group (P>0.05). Similarly, this immobilisation model had no impact on the assessed blood flow kinetics. All parameters had returned to baseline values at the re-mobilisation phase of the study. Conclusion: Overall, at the current doses, neither -3 nor vitamin D supplementation significantly attenuated declines in torque associated with immobilisation. It would appear that muscle function (described h
Details
- Database :
- OAIster
- Notes :
- text, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1267388871
- Document Type :
- Electronic Resource