Back to Search Start Over

Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

Authors :
Irvin, Jeremy
Zhou, Sharon
McNicol, Gavin
Lu, Fred
Liu, Vincent
Fluet-Chouinard, Etienne
Ouyang, Zutao
Knox, Sara Helen
Lucas-Moffat, Antje
Trotta, Carlo
Papale, Dario
Vitale, Domenico
Mammarella, Ivan
Alekseychik, Pavel
Aurela, Mika
Avati, Anand
Baldocchi, Dennis
Bansal, Sheel
Bohrer, Gil
Campbell, David I.
Chen, Jiquan
Chu, Housen
Dalmagro, Higo J.
Delwiche, Kyle B.
Desai, Ankur R.
Euskirchen, Eugenie
Feron, Sarah
Goeckede, Mathias
Heimann, Martin
Helbig, Manuel
Helfter, Carole
Hemes, Kyle S.
Hirano, Takashi
Iwata, Hiroki
Jurasinski, Gerald
Kalhori, Aram
Kondrich, Andrew
Lai, Derrick Y.F.
Lohila, Annalea
Malhotra, Avni
Merbold, Lutz
Mitra, Bhaskar
Ng, Andrew
Nilsson, Mats B.
Noormets, Asko
Peichl, Matthias
Rey-Sanchez, A. Camilo
Richardson, Andrew D.
Runkle, Benjamin R.K.
Schäfer, Karina V.R.
Sonnentag, Oliver
Stuart-Haëntjens, Ellen
Sturtevant, Cove
Ueyama, Masahito
Valach, Alex C.
Vargas, Rodrigo
Vourlitis, George L.
Ward, Eric J.
Wong, Guan Xhuan
Zona, Donatella
Alberto, Ma. Carmelita R.
Billesbach, David P.
Celis, Gerardo
Dolman, Han
Friborg, Thomas
Fuchs, Kathrin
Gogo, Sébastien
Gondwe, Mangaliso J.
Goodrich, Jordan P.
Gottschalk, Pia
Hörtnagl, Lukas
Jacotot, Adrien
Koebsch, Franziska
Kasak, Kuno
Maier, Regine
Morin, Timothy H.
Nemitz, Eiko
Oechel, Walter C.
Oikawa, Patricia Y.
Ono, Keisuke
Sachs, Torsten
Sakabe, Ayaka
Schuur, Edward A.
Shortt, Robert
Sullivan, Ryan C.
Szutu, Daphne J.
Tuittila, Eeva-Stiina
Varlagin, Andrej
Verfaillie, Joeseph G.
Wille, Christian
Windham-Myers, Lisamarie
Poulter, Benjamin
Jackson, Robert B.
Irvin, Jeremy
Zhou, Sharon
McNicol, Gavin
Lu, Fred
Liu, Vincent
Fluet-Chouinard, Etienne
Ouyang, Zutao
Knox, Sara Helen
Lucas-Moffat, Antje
Trotta, Carlo
Papale, Dario
Vitale, Domenico
Mammarella, Ivan
Alekseychik, Pavel
Aurela, Mika
Avati, Anand
Baldocchi, Dennis
Bansal, Sheel
Bohrer, Gil
Campbell, David I.
Chen, Jiquan
Chu, Housen
Dalmagro, Higo J.
Delwiche, Kyle B.
Desai, Ankur R.
Euskirchen, Eugenie
Feron, Sarah
Goeckede, Mathias
Heimann, Martin
Helbig, Manuel
Helfter, Carole
Hemes, Kyle S.
Hirano, Takashi
Iwata, Hiroki
Jurasinski, Gerald
Kalhori, Aram
Kondrich, Andrew
Lai, Derrick Y.F.
Lohila, Annalea
Malhotra, Avni
Merbold, Lutz
Mitra, Bhaskar
Ng, Andrew
Nilsson, Mats B.
Noormets, Asko
Peichl, Matthias
Rey-Sanchez, A. Camilo
Richardson, Andrew D.
Runkle, Benjamin R.K.
Schäfer, Karina V.R.
Sonnentag, Oliver
Stuart-Haëntjens, Ellen
Sturtevant, Cove
Ueyama, Masahito
Valach, Alex C.
Vargas, Rodrigo
Vourlitis, George L.
Ward, Eric J.
Wong, Guan Xhuan
Zona, Donatella
Alberto, Ma. Carmelita R.
Billesbach, David P.
Celis, Gerardo
Dolman, Han
Friborg, Thomas
Fuchs, Kathrin
Gogo, Sébastien
Gondwe, Mangaliso J.
Goodrich, Jordan P.
Gottschalk, Pia
Hörtnagl, Lukas
Jacotot, Adrien
Koebsch, Franziska
Kasak, Kuno
Maier, Regine
Morin, Timothy H.
Nemitz, Eiko
Oechel, Walter C.
Oikawa, Patricia Y.
Ono, Keisuke
Sachs, Torsten
Sakabe, Ayaka
Schuur, Edward A.
Shortt, Robert
Sullivan, Ryan C.
Szutu, Daphne J.
Tuittila, Eeva-Stiina
Varlagin, Andrej
Verfaillie, Joeseph G.
Wille, Christian
Windham-Myers, Lisamarie
Poulter, Benjamin
Jackson, Robert B.
Publication Year :
2021

Abstract

Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an impro

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1264467386
Document Type :
Electronic Resource