Back to Search Start Over

Run-time and Compile-time Support for Adaptive Irregular Problems

Authors :
Sharma, Shamik D.
Sharma, Shamik D.
Ponnusamy, Ravi
Moon, Bongki
Hwang, Yuan-Shin
Das, Raja
Saltz, Joel
Sharma, Shamik D.
Sharma, Shamik D.
Ponnusamy, Ravi
Moon, Bongki
Hwang, Yuan-Shin
Das, Raja
Saltz, Joel
Publication Year :
1998

Abstract

In adaptive irregular problems the data arrays are accessed via indirection arrays, and data access patterns change during computation. Implementing such problems on distributed memory machines requires support for dynamic data partitioning, efficient preprocessing and fast data migration. This research presents efficient runtime primitives for such problems. This new set of primitives is part of the CHAOS library. It subsumes the previous PARTI library which targeted only static irregular problems. To demonstrate the efficacy of the runtime support, two real adaptive irregular applications have been parallelized using CHAOS primitives: a molecular dynamics code (CHARMM) and a particle-in-cell code (DSMC). The paper also proposes extensions to Fortran D which can allow compilers to generate more efficient code for adaptive problems. These language extensions have been implemented in the Syracuse Fortran 90D/HPF prototype compiler. The performance of the compiler parallelized codes is compared with the hand parallelized versions. (Also cross-referenced as UMIACS-TR-94-55)

Details

Database :
OAIster
Notes :
en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.on1262638856
Document Type :
Electronic Resource