Back to Search Start Over

Future Nordic Grid Frequency Quality : A quantitative simulation study of current and potential frequency control methods with emphasis on synthetic inertia

Authors :
Arvidsson, Emil
Arvidsson, Emil
Publication Year :
2021

Abstract

The power grid faces stability problems due to loss of inertia. The ancillary services balancing the system must be improved to maintain stability. In contrast to earlier studies, this thesis estimates how the future grid frequency quality in both the short and long term is affected by different control methods, using an ensemble of quality measures. The thesis uses conventional one-area models for the power grid and FCR-N (frequency containment reserve – normal operation) but develops new models for FCR-D (– disturbed operation), FFR (fast frequency reserve), and synthetic inertia (SI). To acquire proper input data the thesis uses an inverse model of the power grid to compute the momentary load disturbance, i.e., the difference between load and generation, from the grid frequency. The thesis makes a difference between proportional and derivative SI, where the latter is the one commonly associated with the term SI. The results show that derivative SI can improve some quality measures but requires very high power capacity. In contrast, proportional SI improves almost every measure the most, for a fraction of the required capacity. Derivative SI is therefore worth less from a system perspective. However, it is shown that the quality measures improved by derivative SI are related to hydropower wear and tear, making it more interesting for hydro power owners. Moreover, FFR gives no benefit to long time quality measures. Considering the short-term analysis where a large disturbance occurs, FFR gives almost no benefit and risks worsening the stability. Also, for the large disturbance, proportional SI performs the best. The results are limited by the small number of simulations that were performed and can only provide indications of trends. A more solid conclusion, however, is that one cannot expect transmission system operators (TSO) to introduce an ancillary service that builds on derivative SI.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1261914950
Document Type :
Electronic Resource