Back to Search Start Over

Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films

Authors :
Hawash, Zafer
Ono, Luis K.
Raga, Sonia R.
Lee, Michael V.
Qi, Yabing
Hawash, Zafer
Ono, Luis K.
Raga, Sonia R.
Lee, Michael V.
Qi, Yabing
Publication Year :
2015

Abstract

Doping properties of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD) hole transport layer are investigated by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and atomic force microscopy under air exposure. XPS results reveal that 3 h exposure of Li-bis(trifluoromethanesulfonyl)-imide (LiTFSI) doped spiro-MeOTAD to air results in the migration of LiTFSI from the bottom to the top across the spiro-MeOTAD film. AFM images reveal the presence of pinholes with an average diameter of similar to 135 nm and a density of similar to 3.72 holes/mu m(2). In addition, cross-sectional scanning electron microscope images reveal that these pinholes form channels across the doped spiro-MeOTAD film. Optical microscopy and Fourier transform infrared microscopy images confirm the presence of large pinholes with diameters in the range of 1-20 mu m and a density of similar to 289 holes/mm(2) as well. The presence of pinholes may play a major role in the migration processes of the LiTFSI within the spiro-MeOTAD film as well as on the degradation processes of solar cells. This is further confirmed by the rapid decreasing efficiency of perovskite solar cells with solution prepared doped spiro-MeOTAD layers when exposed to air.<br />Correction to article published here April 2022: https://doi.org/10.1021/cm504022q

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1261887854
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1021.cm504022q