Back to Search
Start Over
Inference and Mutual Information on Random Factor Graphs
- Publication Year :
- 2021
-
Abstract
- Random factor graphs provide a powerful framework for the study of inference problems such as decoding problems or the stochastic block model. Information-theoretically the key quantity of interest is the mutual information between the observed factor graph and the underlying ground truth around which the factor graph was created; in the stochastic block model, this would be the planted partition. The mutual information gauges whether and how well the ground truth can be inferred from the observable data. For a very general model of random factor graphs we verify a formula for the mutual information predicted by physics techniques. As an application we prove a conjecture about low-density generator matrix codes from [Montanari: IEEE Transactions on Information Theory 2005]. Further applications include phase transitions of the stochastic block model and the mixed k-spin model from physics.
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1260129605
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.4230.LIPIcs.STACS.2021.24