Back to Search
Start Over
Incidencia de la calidad el aire en el desarrollo urbano sostenible. Metodología de pronóstico basado en herramientas de aprendizaje automático
- Publication Year :
- 2021
-
Abstract
- Tesis por compendio<br />[ES] La calidad del aire es un determinante de la salud y bienestar de las poblaciones; su mejora es parte de algunas metas de los objetivos de desarrollo sostenible (ODS) con la Agenda 2030. Al respecto, se han definido a nivel mundial protocolos, acuerdos, convenios y lineamientos de política para lograr avanzar en el cumplimiento de los ODS. Existen además reportes nacionales de avance en la implementación de metas específicas, según la agenda de cada país y en algunos casos en el ámbito de ciudad, cuyos indicadores pueden integrarse en las dimensiones más conocidas del desarrollo sostenible: la dimensión ambiental, la social y la económica. Existe información sobre el monitoreo del estado de la calidad de los recursos y de condiciones del territorio en diversos temas. Sin embargo, no en todos los territorios, en sus diferentes escalas espaciales, se realiza una continua evaluación de su desempeño sostenible y, además factores de deterioro ambiental como la contaminación del aire, son tratados como determinantes aislados con la generación de reportes de su comportamiento y el desarrollo de planes de monitoreo y de mitigación. Del mismo modo, para los diferentes temas que hacen parte de las dimensiones de la sostenibilidad, existen herramientas de modelación para evaluar el comportamiento de sus indicadores; sin embargo, no se cuenta con un instrumento que pronostique el nivel de avance en el desarrollo sostenible y además que identifique la influencia de la calidad del aire en su comportamiento. Las herramientas de aprendizaje automático pueden aportar en la respuesta a dicha situación, al ser instrumentos útiles en el pronóstico del comportamiento de un conjunto de datos. Por consiguiente, el objetivo central de este trabajo doctoral es establecer la incidencia de la calidad del aire sobre el desarrollo urbano sostenible, en sus dimensiones ambiental, social y económica, mediante el uso de herramientas de aprendizaje automático, como soporte para la toma de deci<br />[CA] La qualitat de l'aire és un determinant de la salut i benestar de les poblacions; la seua millora és part d'algunes metes dels objectius de desenvolupament sostenible (ODS) amb l'Agenda 2030. Sobre aquest tema, s'han definit a nivell mundial protocols, acords, convenis i alineaments de política per a aconseguir avançar en el compliment dels ODS. Existeixen reportes nacionals d'avanç sobre la implementació de metes específiques, segons l'agenda de cada país i en alguns casos en l'àmbit de ciutat, els indicadors de la qual poden integrar-se en les dimensions més conegudes del desenvolupament sostenible: la dimensió ambiental, la social i l'econòmica. Existeix informació sobre el monitoratge de l'estat de la qualitat dels recursos i de les condicions del territori en diversos temes. No obstant això, no en tots els territoris, en les seues diferents escales espacials, es realitza contínua avaluació del seu acompliment sostenible i, a més a més, factors de deterioració ambiental com la contaminació de l'aire, són tractats com a determinants aïllats amb la generació de reportes del seu comportament i el desenvolupament de plans de monitoratge i de mitigació. De la mateixa manera, per als diferents temes que fan part de les dimensions de la sostenibilitat, existeixen eines de modelatge per a avaluar el comportament dels seus indicadors; no obstant això, no es compta amb un instrument que pronostique el nivell d'avanç en el desenvolupament sostenible i a més que identifique la influència de la qualitat de l'aire en el seu comportament. Les eines d'aprenentatge automàtic poden aportar en la resposta a aquesta situació, en ser instruments útils en el pronòstic del comportament d'un conjunt de dades. Per consegüent, l'objectiu central d'aquest treball doctoral és establir la incidència de la qualitat de l'aire sobre el desenvolupament urbà sostenible, en les seues dimensions ambiental, social i econòmica, mitjançant l'ús d'eines d'aprenentatge automàtic, com a suport per<br />[EN] Air quality is a determinant to the health and well-being of populations; its improvement is part of some of the targets of the Sustainable Development Goals (SDGs) with the 2030 Agenda. In this regard, protocols, agreements, pacts, and policy guidelines have been defined worldwide to progress in the SDGs' achievement. Additionally, there are national progress reports on reaching specific goals, based on each country's agenda. In certain cases, these include city-level reports, whose indicators, both at the national and city levels, can be integrated into the central and best-known dimensions of sustainable development, namely the environmental, social, and economic dimensions. There is information concerning the monitoring of the state of resource quality and territorial conditions in various areas. However, not all territories in their different spatial scales are continuously evaluated for their sustainable performance. Moreover, environmental deterioration factors such as air pollution are handled as isolated determinants with reports generated on their behavior, in addition to developing monitoring and mitigation plans. Likewise, there are modeling tools to evaluate the behavior of different components that are part of the dimensions of sustainability. However, there is no instrument that forecasts the level of progress in sustainable development that also identifies the influence of air quality on its behavior. Machine learning tools can contribute to responding to this situation, as they are able to predict the behavior of a data set. Therefore, the primary objective of this doctoral work is to establish the incidence of air quality on urban sustainable development, in its environmental, social, and economic dimensions, through the use of machine learning tools to support decision-making. This objective entails designing and implementing a methodology to identify the influence of air quality indicators on urban sustainable development. This doctoral thes
Details
- Database :
- OAIster
- Notes :
- TEXT, Spanish
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1258894409
- Document Type :
- Electronic Resource