Back to Search Start Over

A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation

Authors :
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Generalitat Valenciana
European Regional Development Fund
Ministerio de Economía y Competitividad
Institut Valencià de Competitivitat Empresarial
Perez-Benito, Francisco Javier
Signol, François
Perez-Cortes, Juan-Carlos
Fuster Bagetto, Alejandro
Pollan, Marina
Pérez-Gómez, Beatriz
Salas-Trejo, Dolores
Casals, Maria
Martínez, Inmaculada
Llobet Azpitarte, Rafael
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Generalitat Valenciana
European Regional Development Fund
Ministerio de Economía y Competitividad
Institut Valencià de Competitivitat Empresarial
Perez-Benito, Francisco Javier
Signol, François
Perez-Cortes, Juan-Carlos
Fuster Bagetto, Alejandro
Pollan, Marina
Pérez-Gómez, Beatriz
Salas-Trejo, Dolores
Casals, Maria
Martínez, Inmaculada
Llobet Azpitarte, Rafael
Publication Year :
2020

Abstract

[EN] Background and Objective: Breast cancer is the most frequent cancer in women. The Spanish healthcare network established population-based screening programs in all Autonomous Communities, where mammograms of asymptomatic women are taken with early diagnosis purposes. Breast density assessed from digital mammograms is a biomarker known to be related to a higher risk to develop breast cancer. It is thus crucial to provide a reliable method to measure breast density from mammograms. Furthermore the complete automation of this segmentation process is becoming fundamental as the amount of mammograms increases every day. Important challenges are related with the differences in images from different devices and the lack of an objective gold standard. This paper presents a fully automated framework based on deep learning to estimate the breast density. The framework covers breast detection, pectoral muscle exclusion, and fibroglandular tissue segmentation. Methods: A multi-center study, composed of 1785 women whose "for presentation" mammograms were segmented by two experienced radiologists. A total of 4992 of the 6680 mammograms were used as training corpus and the remaining (1688) formed the test corpus. This paper presents a histogram normalization step that smoothed the difference between acquisition, a regression architecture that learned segmentation parameters as intrinsic image features and a loss function based on the DICE score. Results: The results obtained indicate that the level of concordance (DICE score) reached by the two radiologists (0.77) was also achieved by the automated framework when it was compared to the closest breast segmentation from the radiologists. For the acquired with the highest quality device, the DICE score per acquisition device reached 0.84, while the concordance between radiologists was 0.76. Conclusions: An automatic breast density estimator based on deep learning exhibits similar performance when compared with two experienced ra

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258893788
Document Type :
Electronic Resource