Back to Search Start Over

Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme

Authors :
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Agencia Estatal de Investigación
Universitat Politècnica de València
Calatayud, J.
Cortés, J.-C.
Díaz, J.A.
Jornet, M.
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Agencia Estatal de Investigación
Universitat Politècnica de València
Calatayud, J.
Cortés, J.-C.
Díaz, J.A.
Jornet, M.
Publication Year :
2020

Abstract

[EN] We study the random heat partial differential equation on a bounded domain assuming that the diffusion coefficient and the boundary conditions are random variables, and the initial condition is a stochastic process. Under general conditions, this stochastic system possesses a unique solution stochastic process in the almost sure and mean square senses. To quantify the uncertainty for this solution process, the computation of the probability density function is a major goal. By using a random finite difference scheme, we approximate the stochastic solution at each point by a sequence of random variables, whose probability density functions are computable, i.e., we construct a sequence of approximating density functions. We include numerical experiments to illustrate the applicability of our method.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258890118
Document Type :
Electronic Resource