Back to Search Start Over

Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images

Authors :
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Université de Bordeaux
National Institutes of Health, EEUU
Universitat Politècnica de València
Agence Nationale de la Recherche, Francia
National Institute of Mental Health, EEUU
Natural Sciences and Engineering Research Council of Canada
National Institute of Neurological Disorders and Stroke, EEUU
National Institute of Biomedical Imaging and Bioengineering, EEUU
Carass, Aaron
Cuzzocreo, Jennifer L.
Han, Shuo
Hernandez-Castillo, Carlos R.
Rasser, Paul E.
Ganz, Melanie
Beliveau, Vincent
Dolz, Jose
Ben Ayed, Ismail
Desrosiers, Christian
Thyreau, Benjamin
Romero Gómez, José Enrique
Coupe, Pierrick
Manjón Herrera, José Vicente
Fonov, Vladimir
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Université de Bordeaux
National Institutes of Health, EEUU
Universitat Politècnica de València
Agence Nationale de la Recherche, Francia
National Institute of Mental Health, EEUU
Natural Sciences and Engineering Research Council of Canada
National Institute of Neurological Disorders and Stroke, EEUU
National Institute of Biomedical Imaging and Bioengineering, EEUU
Carass, Aaron
Cuzzocreo, Jennifer L.
Han, Shuo
Hernandez-Castillo, Carlos R.
Rasser, Paul E.
Ganz, Melanie
Beliveau, Vincent
Dolz, Jose
Ben Ayed, Ismail
Desrosiers, Christian
Thyreau, Benjamin
Romero Gómez, José Enrique
Coupe, Pierrick
Manjón Herrera, José Vicente
Fonov, Vladimir
Publication Year :
2018

Abstract

[EN] The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258888621
Document Type :
Electronic Resource