Back to Search Start Over

Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

Authors :
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
U.S. Department of Energy
National Science Foundation, EEUU
Ministerio de Educación, Cultura y Deporte
Ministerio de Economía y Competitividad
Kastengren, Alan
Ilavsky, J.
Viera-Sotillo, Juan Pablo
Payri, Raul
Duke, Daniel J.
Swantek, A.
Tilocco, F. Zak
Sovis, N.
Powell, Christopher F.
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
U.S. Department of Energy
National Science Foundation, EEUU
Ministerio de Educación, Cultura y Deporte
Ministerio de Economía y Competitividad
Kastengren, Alan
Ilavsky, J.
Viera-Sotillo, Juan Pablo
Payri, Raul
Duke, Daniel J.
Swantek, A.
Tilocco, F. Zak
Sovis, N.
Powell, Christopher F.
Publication Year :
2017

Abstract

[EN] Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 - 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect. (C) 2017 Published by Elsevier Ltd.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258886996
Document Type :
Electronic Resource