Back to Search
Start Over
Deep Sparse Representation Classifier for facial recognition and detection system
- Publication Year :
- 2019
-
Abstract
- © 2019 Elsevier B.V. This paper proposes a two-layer Convolutional Neural Network (CNN) to learn the high-level features which utilizes to the face identification via sparse representation. Feature extraction plays a vital role in real-world pattern recognition and classification tasks. The details description of the given input face image, significantly improve the performance of the facial recognition system. Sparse Representation Classifier (SRC) is a popular face classifier that sparsely represents the face image by a subset of training data, which is known as insensitive to the choice of feature space. The proposed method shows the performance improvement of SRC via a precisely selected feature exactor. The experimental results show that the proposed method outperforms other methods on given datasets.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1257434984
- Document Type :
- Electronic Resource