Back to Search Start Over

Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield

Authors :
Mei, Danhua
Liu, Shiyun
Wang, Sen
Zhou, Renwu
Zhou, Rusen
Fang, Zhi
Zhang, Xianhui
Cullen, Patrick J.
Ostrikov, Kostya (Ken)
Mei, Danhua
Liu, Shiyun
Wang, Sen
Zhou, Renwu
Zhou, Rusen
Fang, Zhi
Zhang, Xianhui
Cullen, Patrick J.
Ostrikov, Kostya (Ken)
Source :
Renewable Energy
Publication Year :
2020

Abstract

Plasma-enabled liquefaction (PEL) is an emerging technology to transform renewable biomass into value-added fuels and chemicals through the plasma-induced highly-reactive chemical reactions. However, biomass dramatically ranges in the feedstock content in terms of hemicelluloses, cellulose, lignin, and ash, strongly affecting the liquefaction performance. Here, we performed the liquefaction of three typical lignocellulosic materials (sawdust, corncob and rice straw) with different feedstock contents in a PEL system. The influence of the catalyst content and the reaction time on the degradation of each biomass was investigated to understand the effect of the feedstock content on liquefaction yield. The results confirmed that the chemical contents of the lignocellulosic biomass especially the amount of lignin and ash significantly affected the liquefaction yield, the quality of liquid products and the distributions of the chemicals obtained. Compared with the PEL performance of corncob and rice straw, the higher energy yield (liquid fuels) was achieved in the PEL of sawdust, owing to higher content of lignin and less ash inside. Moreover, possible reaction pathways of lignocellulose biomass liquefaction were deduced based on the chemical analysis. Overall, this work demonstrated that the proposed PEL strategy could be a promising approach for rapid biomass conversion with high energy efficiencies.

Details

Database :
OAIster
Journal :
Renewable Energy
Publication Type :
Electronic Resource
Accession number :
edsoai.on1255561384
Document Type :
Electronic Resource