Back to Search
Start Over
Radiomics-Based Prediction of Long-Term Treatment Response of Vestibular Schwannomas Following Stereotactic Radiosurgery
- Publication Year :
- 2020
-
Abstract
- OBJECTIVE: Stereotactic radiosurgery (SRS) is one of the treatment modalities for vestibular schwannomas (VSs). However, tumor progression can still occur after treatment. Currently, it remains unknown how to predict long-term SRS treatment outcome. This study investigates possible magnetic resonance imaging (MRI)-based predictors of long-term tumor control following SRS. STUDY DESIGN: Retrospective cohort study. SETTING: Tertiary referral center. PATIENTS: Analysis was performed on a database containing 735 patients with unilateral VS, treated with SRS between June 2002 and December 2014. Using strict volumetric criteria for long-term tumor control and tumor progression, a total of 85 patients were included for tumor texture analysis. INTERVENTION(S): All patients underwent SRS and had at least 2 years of follow-up. MAIN OUTCOME MEASURE(S): Quantitative tumor texture features were extracted from conventional MRI scans. These features were supplied to a machine learning stage to train prediction models. Prediction accuracy, sensitivity, specificity, and area under the receiver operating curve (AUC) are evaluated. RESULTS: Gray-level co-occurrence matrices, which capture statistics from specific MRI tumor texture features, obtained the best prediction scores: 0.77 accuracy, 0.71 sensitivity, 0.83 specificity, and 0.93 AUC. These prediction scores further improved to 0.83, 0.83, 0.82, and 0.99, respectively, for tumors larger than 5 cm. CONCLUSIONS: Results of this study show the feasibility of predicting the long-term SRS treatment response of VS tumors on an individual basis, using MRI-based tumor texture features. These results can be exploited for further research into creating a clinical decision support system, facilitating physicians, and patients to select a personalized optimal treatment strategy.
Details
- Database :
- OAIster
- Notes :
- application/pdf, Otology & Neurotology vol. 41 no. 10, pp. e1321-e1327, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1244879386
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1097.MAO.0000000000002886