Back to Search Start Over

Supercooled Southern Ocean waters

Authors :
Haumann, F. Alexander
Moorman, Ruth
Riser, Stephen C.
Smedsrud, Lars H.
Maksym, Ted
Wong, Annie P. S.
Wilson, Earle A.
Drucker, Robert S.
Talley, Lynne D.
Johnson, Kenneth S.
Key, Robert M.
Sarmiento, Jorge L.
Haumann, F. Alexander
Moorman, Ruth
Riser, Stephen C.
Smedsrud, Lars H.
Maksym, Ted
Wong, Annie P. S.
Wilson, Earle A.
Drucker, Robert S.
Talley, Lynne D.
Johnson, Kenneth S.
Key, Robert M.
Sarmiento, Jorge L.
Publication Year :
2020

Abstract

© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Haumann, F. A., Moorman, R., Riser, S. C., Smedsrud, L. H., Maksym, T., Wong, A. P. S., Wilson, E. A., Drucker, R., Talley, L. D., Johnson, K. S., Key, R. M., & Sarmiento, J. L. Supercooled Southern Ocean waters. Geophysical Research Letters, 47(20), (2020): e2020GL090242, doi:10.1029/2020GL090242.<br />In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice‐covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal‐ocean supercooling to melting of Antarctic ice shelves and surface‐induced supercooling in the seasonal sea‐ice region to wintertime sea‐ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water‐mass structure in the polar ocean.<br />F. A. H. was supported by the Swiss National Science Foundation (SNSF; Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung) grant numbers P2EZP2_175162 and P400P2_186681. This work was supported by the National Science Foundation (NSF) Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF Award PLR‐1425989. R. M. would like to thank the National Oceanic and Atmospheric Administration (NOAA) GFDL for mentorship and computational support. S. R. was also supported by the U.S. Argo grant and NOAA grant NA15OAR4320063 to the University of Washington. L. H. S. thanks the Fulbright Foundation for the U.S.‐Norway Arctic Chair grant. We are deeply thankful to the large number of scientists, technicians, and funding agencies contributing to these databases, being responsible for the collection and quality control of the high‐quality data that form the basis of this work. We thank Josh Plant for his initial notification on very low temperatures observed in some of the float profiles. We would also like to thank the students, teachers, and schools who are participating in the SOCCOM Adopt‐a‐Float program. Four of the floats used in this study were adopted and have a clear signal of supercooling. These participants are listed in Table S1.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1241556839
Document Type :
Electronic Resource