Back to Search Start Over

Targeting UBC9-Mediated Protein Hyper-SUMOylation in Cystic Cholangiocytes Halts Polycystic Liver Disease in Experimental Models

Authors :
Fisiología
Medicina
Fisiologia
Medikuntza
Lee-Law, Pui Y.
Olaizola, Paula
Caballero Camino, Francisco Javier
Izquierdo Sánchez, Laura
Rodrigues, Pedro M.
Santos Laso, Álvaro
Azkargorta, Mikel
Elortza, Felix
Martínez Chantar, María Luz
Perugorria Montiel, María Jesús
Aspichueta Celaá, Patricia
Marzioni, Marco
LaRusso, Nicholas F.
Bujanda Fernández de Pierola, Luis
Drenth, Joost P. H.
Bañales Asurmendi, Jesús María
Fisiología
Medicina
Fisiologia
Medikuntza
Lee-Law, Pui Y.
Olaizola, Paula
Caballero Camino, Francisco Javier
Izquierdo Sánchez, Laura
Rodrigues, Pedro M.
Santos Laso, Álvaro
Azkargorta, Mikel
Elortza, Felix
Martínez Chantar, María Luz
Perugorria Montiel, María Jesús
Aspichueta Celaá, Patricia
Marzioni, Marco
LaRusso, Nicholas F.
Bujanda Fernández de Pierola, Luis
Drenth, Joost P. H.
Bañales Asurmendi, Jesús María
Publication Year :
2021

Abstract

BACKGROUND & AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple fluid-filled biliary cysts. Most PLD-causative genes participate in protein biogenesis and/or transport. Post-translational modifications (PTMs) are implicated in protein stability, localization and activity, contributing to human pathobiology; however, their role in PLD is unknown. Herein, we aimed to unveil the role of protein SUMOylation in PLD and its potential therapeutic targeting. METHODS: Levels and functional effects of SUMOylation, along with response to S-adenosylmethionine (SAMe, inhibitor of the SUMOylation enzyme UBC9) and/or short-hairpin RNAs (shRNAs) against UBE2I (UBC9), were evaluated invitro, invivo and/or in patients with PLD. SUMOylated proteins were determined by immunoprecipitation and proteomic analyses by mass spectrometry. RESULTS: Most SUMOylation-related genes were found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in cystic cholangiocytes in culture compared to controls. Increased SUMOylated protein levels were also observed in cystic human cholangiocytes in culture, which decreased after SAMe administration. Chronic treatment of polycystic (PCK: Pkdh1-mut) rats with SAMe halted hepatic cystogenesis and fibrosis, and reduced liver/body weight ratio and liver volume. Invitro, both SAMe and shRNA-mediated UBE2I knockdown increased apoptosis and reduced cell proliferation of cystic cholangiocytes. High-throughput proteomic analysis of SUMO1-immunoprecipitated proteins in cystic cholangiocytes identified candidates involved in protein biogenesis, ciliogenesis and proteasome degradation. Accordingly, SAMe hampered proteasome hyperactivity in cystic cholangiocytes, leading to activation of the unfolded protein response and stress-related apoptosis. CONCLUSIONS: Cystic cholangiocytes exhibit increased SUMOylation of proteins involved in cell survival and proliferation, thus promoting hepati

Details

Database :
OAIster
Notes :
Spanish Carlos III Health Institute (ISCIII) [J.M. Banales (FIS PI12/00380, PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 and CPII19/00008); M.J. Perugorria (FIS PI14/00399, PI17/00022 and PI20/00186); P.M. Rodrigues (Sara Borrell CD19/00254)] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); Ministerio de Ciencia, Innovación y Universidades (MICINN; M.L. Martinez-Chantar: SAF2017-87301-R); “Instituto de Salud Carlos III” [CIBERehd: J.M. Banales, M.J. Perugorria, M.L. Martinez-Chantar and L. Bujanda], Spain; “Diputación Foral Gipuzkoa” (J.M. Banales: DFG15/010, DFG16/004), Department of Health of the Basque Country (M.J. Perugorria: 2019111024, 2015111100 and J.M. Banales: 2017111010), “Euskadi RIS3” (J.M. Banales: 2016222001, 2017222014, 2018222029, 2019222054, 2020333010), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J.M. Banales and M.L. Martinez-Chantar) and Department of Industry of the Basque Country (J.M. Banales: Elkartek: KK-2020/00008). La Caixa Scientific Foundation (J.M. Banales and M.L. Martinez-Chantar: HR17-00601). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to J.M. Banales and M.L. Martinez-Chantar). “Ayudas para apoyar grupos de investigación del Sistema Universitario Vasco” (IT971-16 to P.A.). Università Politecnica delle Marche PSA2017_UNIVPM grant (to M. Marzioni). National Institutes of Health (NIH) of United States of America (DK24031 to N.F. LaRusso). MJ Perugorria was funded by the Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Program RYC-2015-17755), P.Y. Lee-Law by the European Association for the Study of the Liver (EASL; Sheila Sherlock Award 2017), F.J. Caballero-Camino by the Spanish Ministry of Science and Innovation (BES-2014-069148), and P. Olaizola and A. Santos-Laso by the Basque Government (PRE_2016_1_0269, PRE_2015_1_0126). We thank MINECO for the Severo Ochoa Excellence Accredi, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1241091552
Document Type :
Electronic Resource