Back to Search Start Over

Live demonstration — Multilayer spiking neural network for audio samples classification using SpiNNaker

Authors :
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
Universidad de Sevilla. TEP-108: Robótica y Tecnología de Computadores Aplicada a la Rehabilitación
Domínguez Morales, Juan Pedro
Ríos Navarro, José Antonio
Gutiérrez Galán, Daniel
Tapiador Morales, Ricardo
Jiménez Fernández, Ángel Francisco
Cerezuela Escudero, Elena
Domínguez Morales, Manuel Jesús
Linares Barranco, Alejandro
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
Universidad de Sevilla. TEP-108: Robótica y Tecnología de Computadores Aplicada a la Rehabilitación
Domínguez Morales, Juan Pedro
Ríos Navarro, José Antonio
Gutiérrez Galán, Daniel
Tapiador Morales, Ricardo
Jiménez Fernández, Ángel Francisco
Cerezuela Escudero, Elena
Domínguez Morales, Manuel Jesús
Linares Barranco, Alejandro
Publication Year :
2017

Abstract

In this demonstration we present a spiking neural network architecture for audio samples classification using SpiNNaker. The network consists of different leaky integrate-and-fire neuron layers. The connections between them are trained using firing rate based algorithms. Tests use sets of pure tones with frequencies that range from 130.813 to 1396.91 Hz. Audio signals coming from the computer are converted to spikes using a Neuromorphic Auditory Sensor and, after that, this information is sent to the SpiNNaker board through a PCB that translates from AER to 2-of-7 protocol. The classification output obtained in the spiking neural network deployed on SpiNNaker is then shown in the computer screen. Different levels of random noise are added to the original audio signals in order to test the robustness of the classification system.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1240071524
Document Type :
Electronic Resource