Back to Search Start Over

Live Demonstration: Neuromorphic Row-by-Row Multi-convolution FPGA Processor-SpiNNaker architecture for Dynamic-Vision Feature Extraction

Authors :
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
Universidad de Sevilla. TEP-108: Robótica y Tecnología de Computadores Aplicada a la Rehabilitación
Tapiador Morales, Ricardo
Domínguez Morales, Juan Pedro
Gutiérrez Galán, Daniel
Ríos Navarro, José Antonio
Jiménez Fernández, Ángel Francisco
Linares Barranco, Alejandro
Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores
Universidad de Sevilla. TEP-108: Robótica y Tecnología de Computadores Aplicada a la Rehabilitación
Tapiador Morales, Ricardo
Domínguez Morales, Juan Pedro
Gutiérrez Galán, Daniel
Ríos Navarro, José Antonio
Jiménez Fernández, Ángel Francisco
Linares Barranco, Alejandro
Publication Year :
2019

Abstract

In this demonstration a spiking neural network architecture for vision recognition using an FPGA spiking convolution processor, based on leaky integrate and fire neurons (LIF) and a SpiNNaker board is presented. The network has been trained with Poker-DVS dataset in order to classify the four different card symbols. The spiking convolution processor extracts features from images in form of spikes, computes by one layer of 64 convolutions. These features are sent to an OKAERtool board that converts from AER to 2-7 protocol to be classified by a spiking neural network deployed on a SpiNNaker platform.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1240066421
Document Type :
Electronic Resource