Back to Search Start Over

Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription

Authors :
Massachusetts Institute of Technology. Department of Biological Engineering
Koch Institute for Integrative Cancer Research at MIT
Struntz, Nicholas B.
Chen, Andrew I
Deutzmann, Anja
Wilson, Robert M.
Stefan, Eric
Evans, Helen L
Ramirez, Maricela A.
Liang, Tong
Caballero, Francisco
Wildschut, Mattheus H.E.
Neel, Dylan V
Freeman, David B.
Pop, Marius S
McConkey, Marie
Muller, Sandrine
Curtin, Brice Harrison
Tseng, Hanna
Frombach, Kristen R.
Butty, Vincent L G
Levine, Stuart S.
Feau, Clementine
Elmiligy, Sarah
Hong, Jiyoung A.
Lewis, Timothy A.
Vetere, Amedeo
Clemons, Paul A.
Malstrom, Scott E.
Ebert, Benjamin L.
Lin, Charles Y.
Felsher, Dean W.
Koehler, Angela Nicole
Massachusetts Institute of Technology. Department of Biological Engineering
Koch Institute for Integrative Cancer Research at MIT
Struntz, Nicholas B.
Chen, Andrew I
Deutzmann, Anja
Wilson, Robert M.
Stefan, Eric
Evans, Helen L
Ramirez, Maricela A.
Liang, Tong
Caballero, Francisco
Wildschut, Mattheus H.E.
Neel, Dylan V
Freeman, David B.
Pop, Marius S
McConkey, Marie
Muller, Sandrine
Curtin, Brice Harrison
Tseng, Hanna
Frombach, Kristen R.
Butty, Vincent L G
Levine, Stuart S.
Feau, Clementine
Elmiligy, Sarah
Hong, Jiyoung A.
Lewis, Timothy A.
Vetere, Amedeo
Clemons, Paul A.
Malstrom, Scott E.
Ebert, Benjamin L.
Lin, Charles Y.
Felsher, Dean W.
Koehler, Angela Nicole
Source :
Andrew Chen
Publication Year :
2020

Abstract

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.<br />National Cancer Institute (Grant R01-CA160860)<br />National Cancer Institute (Grant P30-CA14051)<br />National Cancer Institute (Grant U01-CA176152)<br />National Cancer Institute (Grant CA170378PQ2)<br />National Institutes of Health (Grant CA170378PQ2)

Details

Database :
OAIster
Journal :
Andrew Chen
Notes :
application/zip, application/pdf, application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1239995794
Document Type :
Electronic Resource