Back to Search Start Over

Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.

Authors :
Thomas, Minta
Sakoda, Lori C
Hoffmeister, Michael
Rosenthal, Elisabeth A
Lee, Jeffrey K
van Duijnhoven, Franzel J B
Platz, Elizabeth A
Wu, Anna H
Dampier, Christopher H
de la Chapelle, Albert
Wolk, Alicja
Joshi, Amit D
Burnett-Hartman, Andrea
Gsur, Andrea
Lindblom, Annika
Castells, Antoni
Win, Aung Ko
Namjou, Bahram
Van Guelpen, Bethany
Tangen, Catherine M
He, Qianchuan
Li, Christopher I
Schafmayer, Clemens
Joshu, Corinne E
Ulrich, Cornelia M
Bishop, D Timothy
Buchanan, Daniel D
Schaid, Daniel
Drew, David A
Muller, David C
Duggan, David
Crosslin, David R
Albanes, Demetrius
Giovannucci, Edward L
Larson, Eric
Qu, Flora
Mentch, Frank
Giles, Graham G
Hakonarson, Hakon
Hampel, Heather
Stanaway, Ian B
Figueiredo, Jane C
Huyghe, Jeroen R
Minnier, Jessica
Chang-Claude, Jenny
Hampe, Jochen
Harley, John B
Visvanathan, Kala
Curtis, Keith R
Offit, Kenneth
Li, Li
Le Marchand, Loic
Vodickova, Ludmila
Gunter, Marc J
Jenkins, Mark A
Slattery, Martha L
Lemire, Mathieu
Woods, Michael O
Song, Mingyang
Murphy, Neil
Lindor, Noralane M
Dikilitas, Ozan
Pharoah, Paul D P
Campbell, Peter T
Newcomb, Polly A
Milne, Roger L
MacInnis, Robert J
Castellví-Bel, Sergi
Ogino, Shuji
Berndt, Sonja I
Bézieau, Stéphane
Thibodeau, Stephen N
Gallinger, Steven J
Zaidi, Syed H
Harrison, Tabitha A
Keku, Temitope O
Hudson, Thomas J
Vymetalkova, Veronika
Moreno, Victor
Martín, Vicente
Arndt, Volker
Wei, Wei-Qi
Chung, Wendy
Su, Yu-Ru
Hayes, Richard B
White, Emily
Vodicka, Pavel
Casey, Graham
Gruber, Stephen B
Schoen, Robert E
Chan, Andrew T
Potter, John D
Brenner, Hermann
Jarvik, Gail P
Corley, Douglas A
Peters, Ulrike
Hsu, Li
Thomas, Minta
Sakoda, Lori C
Hoffmeister, Michael
Rosenthal, Elisabeth A
Lee, Jeffrey K
van Duijnhoven, Franzel J B
Platz, Elizabeth A
Wu, Anna H
Dampier, Christopher H
de la Chapelle, Albert
Wolk, Alicja
Joshi, Amit D
Burnett-Hartman, Andrea
Gsur, Andrea
Lindblom, Annika
Castells, Antoni
Win, Aung Ko
Namjou, Bahram
Van Guelpen, Bethany
Tangen, Catherine M
He, Qianchuan
Li, Christopher I
Schafmayer, Clemens
Joshu, Corinne E
Ulrich, Cornelia M
Bishop, D Timothy
Buchanan, Daniel D
Schaid, Daniel
Drew, David A
Muller, David C
Duggan, David
Crosslin, David R
Albanes, Demetrius
Giovannucci, Edward L
Larson, Eric
Qu, Flora
Mentch, Frank
Giles, Graham G
Hakonarson, Hakon
Hampel, Heather
Stanaway, Ian B
Figueiredo, Jane C
Huyghe, Jeroen R
Minnier, Jessica
Chang-Claude, Jenny
Hampe, Jochen
Harley, John B
Visvanathan, Kala
Curtis, Keith R
Offit, Kenneth
Li, Li
Le Marchand, Loic
Vodickova, Ludmila
Gunter, Marc J
Jenkins, Mark A
Slattery, Martha L
Lemire, Mathieu
Woods, Michael O
Song, Mingyang
Murphy, Neil
Lindor, Noralane M
Dikilitas, Ozan
Pharoah, Paul D P
Campbell, Peter T
Newcomb, Polly A
Milne, Roger L
MacInnis, Robert J
Castellví-Bel, Sergi
Ogino, Shuji
Berndt, Sonja I
Bézieau, Stéphane
Thibodeau, Stephen N
Gallinger, Steven J
Zaidi, Syed H
Harrison, Tabitha A
Keku, Temitope O
Hudson, Thomas J
Vymetalkova, Veronika
Moreno, Victor
Martín, Vicente
Arndt, Volker
Wei, Wei-Qi
Chung, Wendy
Su, Yu-Ru
Hayes, Richard B
White, Emily
Vodicka, Pavel
Casey, Graham
Gruber, Stephen B
Schoen, Robert E
Chan, Andrew T
Potter, John D
Brenner, Hermann
Jarvik, Gail P
Corley, Douglas A
Peters, Ulrike
Hsu, Li
Publication Year :
2020

Abstract

Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might be

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1236088689
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.ajhg.2020.07.006