Back to Search
Start Over
Exploration Strategies for Robotic Vacuum Cleaners
- Publication Year :
- 2018
-
Abstract
- In this thesis, an exploration mode for the PUREi9 robotic vacuum cleaner is implemented. This exploration would provide information for optimizing the cleaning path beforehand, and would allow the robot to relocalize itself or the charger more easily in case it gets lost. Two elements are needed in order to implement an exploration mode; first, an exploration algo-rithm which will decide the next position of the robot in order to obtain useful information about the environment (unknown areas, empty spaces, obstacles...), and second, an exploration map which stores that information and is updated each time a new relevant position is reached. These elements are related and generally both are required for performing successfully the exploration of a specific environment. A frontier-based strategy is adopted for the exploration algorithm, together with occupancy grid maps. This strategy has long been regarded as a key method for autonomous robots working in unknown or changing environments. The idea of frontier-based algorithms is to divide the environ-ment into cells of regular size and drive the robot to the frontiers between cells with no obstacles and cells for which no information has been gathered. It plans one step ahead by choosing a lo-cation which provides new environment information, instead of planning in advance all locations where the robot needs to acquire new sensor information. Based on frontier strategy, two different exploration algorithms are implemented in the project. The first one is called "random frontier strategy", which chooses arbitrarily the frontier to go among the frontiers set. The second is called "closest frontier strategy", which chooses the closest frontier as the NBV (Next Best View) the robot should drive to. A path planning algorithm, based on Dijkstra’s algorithm and a node graph, has also been implemented in order to guide the robot towards the frontiers. The two methods have been compared by means of simulations in different en<br />I den här rapporten har vi implementerat en utforskningsmod för robotdammsugaren Pure i9. Sådan utforskning skulle ge underlag för att optimera städmönstret i förhand och låta roboten relokalisera sig själv eller laddaren om den tappar bort sig. För att implementera utforskning behövs två saker. För det första krävs en algoritm för utforsk-ning, som bestämmer nästa position för roboten, med målet att samla användbar information om omgivningen (okända eller fria områden, hinder etc.) För det andra krävs en karta som lagrar informationen och uppdateras varje gång roboten når en relevant ny position. Dessa två hänger ihop och i allmänhet krävs båda för att framgångsrikt utforska ett specifikt område. Vi har valt en front-baserad strategi för utforskningsalgoritmen, tillsammans med en rutnäts-karta med sannolikheten för hinder. Denna strategi har länge betraktats som en nyckelmetod för autonoma robotar som arbetar i okända eller föränderliga miljöer. Idén med front-baserade strate-gier är att köra roboten till fronterna mellan celler utan hinder och celler där information saknas. Den planerar ett steg framåt genom att välja en plats som ger ny information om miljön, istället för att i förväg planera alla platser där roboten behöver samla in ny sensorinformation. Baserat på front-strategi, har vi implementerat två utforskningsalgoritmer i projektet. Den första är en slumpmässig strategi, som godtyckligt väljer en front att åka till, ur hela mängden av fronter. Den andra är en närmaste fronten-strategi som väljer den närmaste fronten som den nästa bästa utsiktspunkt som roboten ska åka till. Vi har också implementerat en algoritm för banplanering, baserad på Dijkstras algoritm och en nod-graf, för att styra roboten mot fronterna. Vi har jämfört de två metoderna genom simulering i olika miljöer. Dessutom har båda utforsk-ningsstrategierna testats på en riktig enhet. Närmaste fronten-strategin är effektivare med avse-ende på banlängd mellan skanningspunkter, medan båda meto
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1235304353
- Document Type :
- Electronic Resource