Back to Search Start Over

Observation of the fastest chemical processes in the radiolysis of water

Authors :
Loh, Z-H
Doumy, G.
Arnold, C.
Kjellsson, Ludvig
Southworth, S. H.
Al Haddad, A.
Kumagai, Y.
Tu, M-F
Ho, P. J.
March, A. M.
Schaller, R. D.
Yusof, M. S. Bin Mohd
Debnath, T.
Simon, M.
Welsch, R.
Inhester, L.
Khalili, K.
Nanda, K.
Krylov, A. , I
Moeller, S.
Coslovich, G.
Koralek, J.
Minitti, M. P.
Schlotter, W. F.
Rubensson, Jan-Erik
Santra, R.
Young, L.
Loh, Z-H
Doumy, G.
Arnold, C.
Kjellsson, Ludvig
Southworth, S. H.
Al Haddad, A.
Kumagai, Y.
Tu, M-F
Ho, P. J.
March, A. M.
Schaller, R. D.
Yusof, M. S. Bin Mohd
Debnath, T.
Simon, M.
Welsch, R.
Inhester, L.
Khalili, K.
Nanda, K.
Krylov, A. , I
Moeller, S.
Coslovich, G.
Koralek, J.
Minitti, M. P.
Schlotter, W. F.
Rubensson, Jan-Erik
Santra, R.
Young, L.
Publication Year :
2020

Abstract

Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235253297
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1126.science.aaz4740