Back to Search Start Over

Quantitative estimation of extravascular lung water volume and preload by dynamic 15O-water positron emission tomography

Authors :
Nielsen, Roni Ranghøj
Sörensen, Jens
Tolbod, Lars
Alstrup, Aage Kristian Olsen
Iversen, Peter
Frederiksen, Christian Alcaraz
Wiggers, Henrik
Jorsal, Anders
Frøkier, Jørgen
Harms, Hendrik Johannes
Nielsen, Roni Ranghøj
Sörensen, Jens
Tolbod, Lars
Alstrup, Aage Kristian Olsen
Iversen, Peter
Frederiksen, Christian Alcaraz
Wiggers, Henrik
Jorsal, Anders
Frøkier, Jørgen
Harms, Hendrik Johannes
Publication Year :
2019

Abstract

AIMS: Left ventricular filling pressure (preload) can be assessed by pulmonary capillary wedge pressure (PCWP) during pulmonary arterial catheterization (PAC). An emerging method [pulse indexed contour cardiac output (PICCO)] can estimate preload by global end-diastolic volume (GEDV) and congestion as extravascular lung water (EVLW) content. However, no reliable quantitative non-invasive methods are available. Hence, in a porcine model of pulmonary congestion, we evaluated EVLW and GEDV by positron emission tomography (PET). The method was applied in 35 heart failure (HF) patients and 9 healthy volunteers. METHODS AND RESULTS: Eight pigs were studied. Pulmonary congestion was induced by a combination of beta-blockers, angiotensin-2 agonist and saline infusion. PAC, PICCO, computerized tomography, and 15O-H2O-PET were performed. EVLW increased from 521 ± 76 to 973 ± 325 mL (P < 0.001) and GEDV from 1068 ± 170 to 1254 ± 85 mL (P < 0.001). 15O-H2O-PET measures of EVLW increased from 566 ± 151 to 797 ± 231 mL (P < 0.001) and GEDV from 364 ± 60 to 524 ± 92 mL (P < 0.001). Both EVLW and GEDV measured with PICCO and 15O-H2O-PET correlated (r2 = 0.40, P < 0.001; r2 = 0.40, P < 0.001, respectively). EVLW correlated with Hounsfield units (HU; PICCO: r2 = 0.36, P < 0.001, PET: r2 = 0.46, P < 0.001) and GEDV with PCWP (PICCO: r2 = 0.20, P = 0.01, PET: r2 = 0.29, P = 0.002). In human subjects, measurements were indexed (I) for body surface area. Neither EVLWI nor HU differed between chronic stable HF patients and healthy volunteers (P = 0.11, P = 0.29) whereas GEDVI was increased in HF patients (336 ± 66 mL/m2 vs. 276 ± 44 mL/m2, P = 0.01). CONCLUSION: The present study demonstrates that 15O-H2O-PET can assess pulmonary congestion and preload quantitatively. Hence, prognostic information from 15O-H2O-PET examinations should be evaluated in clinical trials.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235235102
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1093.ehjci.jez038