Back to Search Start Over

Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles

Authors :
Dordevic, Mirko
Stojkovic, Biljana
Savkovic, Uros
Immonen, Elina
Tucic, Nikola
Lazarevic, Jelica
Arnqvist, Göran
Dordevic, Mirko
Stojkovic, Biljana
Savkovic, Uros
Immonen, Elina
Tucic, Nikola
Lazarevic, Jelica
Arnqvist, Göran
Publication Year :
2017

Abstract

The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235186380
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1111.evo.13109