Back to Search Start Over

Polymer Gels as Pharmaceutical Dosage Forms : Rheological Performance and Physicochemical Interactions at the Gel-Mucus Interface for Formulations Intended for Mucosal Drug Delivery

Authors :
Hägerström, Helene
Hägerström, Helene
Publication Year :
2003

Abstract

Drug delivery to the nasal and ocular mucosa faces several obstacles. One of these is from the effective clearance mechanisms present in the nose and eye. Polymer gels with suitable rheological properties can facilitate the absorption of poorly absorbed drugs by increasing the contact time of the drug with the mucosa. This has been attributed to the rheological and mucoadhesive properties of the gel. The main objective of this thesis was to investigate the importance of these features for the anticipated in vivo contact time, here exemplified by the ocular and nasal routes of administration. The in situ gelling polymer gellan gum was found to have a favourable rheological and in vivo performance. When administered in the nasal cavity of rats, a gel was formed that could remain at the site of administration for up to 4 hours. In addition, the epithelial uptake and transfer of a 3 kDa fluorescein dextran was higher than for a mannitol solution. Therefore, it was concluded that a gellan gum formulation should be a promising strategy for nasal drug delivery. The potential mucoadhesive properties of a variety of polymer gels were investigated using a rheological method and by measuring the tensile force required to detach the gel from a mucosa. With both methods the rheological properties of the gel were a determining factor for the results obtained. The rheological method was found to have several limitations. One of these was that a positive response, interpreted as mucoadhesion, was only seen with weak gels. The tensile method could, in contrast, detect strengthening of the mucus only for strong gels. However, this method reflects the in vivo performance of the gel better than the rheological method. Finally, dielectric spectroscopy was explored as a tool for investigating the likelihood of intimate surface contact between the gel and the mucus layer. This novel approach involved determining the ease with which a charged particle can pass the gel-mucus interface layer

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235162717
Document Type :
Electronic Resource