Back to Search Start Over

Strong reinforcement effects in 2D cellulose nanofibril-graphene oxide (CNF-GO) nanocomposites due to GO-induced CNF ordering

Authors :
Mianehrow, Hanieh
Lo Re, Giada
Carosio, Federico
Fina, Alberto
Larsson, Per Tomas
Chen, Pan
Berglund, Lars
Mianehrow, Hanieh
Lo Re, Giada
Carosio, Federico
Fina, Alberto
Larsson, Per Tomas
Chen, Pan
Berglund, Lars
Publication Year :
2020

Abstract

Nanocomposites from native cellulose with low 2D nanoplatelet content are of interest as sustainable materials combining functional and structural performance. Cellulose nanofibril-graphene oxide (CNF-GO) nanocomposite films are prepared by a physical mixing-drying method, with a focus on low GO content, the use of very large GO platelets (2-45 mu m) and nanostructural characterization using synchrotron X-ray source for WAXS and SAXS. These nanocomposites can be used as transparent coatings, strong films or membranes, as gas barriers or in laminated form. CNF nanofibrils with random in-plane orientation, form a continuous non-porous matrix with GO platelets oriented in-plane. GO reinforcement mechanisms in CNF are investigated, and relationships between nanostructure and suspension rheology, mechanical properties, optical transmittance and oxygen barrier properties are investigated as a function of GO content. A much higher modulus reinforcement efficiency is observed than in previous polymer-GO studies. The absolute values for modulus and ultimate strength are as high as 17 GPa and 250 MPa at a GO content as small as 0.07 vol%. The remarkable reinforcement efficiency is due to improved organization of the CNF matrix; and this GO-induced mechanism is of general interest for nanostructural tailoring of CNF-2D nanoplatelet composites.<br />QC 20201030

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235090207
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1039.d0ta04406g