Back to Search Start Over

THE TWO-TYPE RICHARDSON MODEL IN THE HALF-PLANE

Authors :
Ahlberg, Daniel
Deijfen, Maria
Hoffman, Christopher
Ahlberg, Daniel
Deijfen, Maria
Hoffman, Christopher
Publication Year :
2020

Abstract

The two-type Richardson model describes the growth of two competing infection types on the two or higher dimensional integer lattice. For types that spread with the same intensity, it is known that there is a positive probability for infinite coexistence, while for types with different intensities, it is conjectured that infinite coexistence is not possible. In this paper we study the two-type Richardson model in the upper half-plane Z x Z(+), and prove that coexistence of two types starting on the horizontal axis has positive probability if and only if the types have the same intensity.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235050324
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1214.19-AAP1557