Back to Search Start Over

NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction

Authors :
Lu, Can
Ma, Zili
Jäger, Jakob
Budnyak, Tetyana M.
Dronskowski, Richard
Rokicińska, Anna
Kustrowski, Piotr
Pammer, Frank
Slabon, Adam
Lu, Can
Ma, Zili
Jäger, Jakob
Budnyak, Tetyana M.
Dronskowski, Richard
Rokicińska, Anna
Kustrowski, Piotr
Pammer, Frank
Slabon, Adam
Publication Year :
2020

Abstract

Conjugated polymers are emerging as alternatives to inorganic semiconductors for the photoelectrochemical water splitting. Herein, semi-transparent poly(4-alkylthiazole) layers with different trialkylsilyloxymethyl (R3SiOCH2-) side chains (PTzTNB, R = n-butyl; PTzTHX, R = n-hexyl) are applied to functionalize NiO thin films to build hybrid photocathodes. The hybrid interface allows for the effective spatial separation of the photoexcited carriers. Specifically, the PTzTHX-deposited composite photocathode increases the photocurrent density 6- and 2-fold at 0 V versus the reversible hydrogen electrode in comparison to the pristine NiO and PTzTHX photocathodes, respectively. This is also reflected in the substantial anodic shift of onset potential under simulated Air Mass 1.5 Global illumination, owing to the prolonged lifetime, augmented density, and alleviated recombination of photogenerated electrons. Additionally, coupling the inorganic and organic components also enhances the photoabsorption and amends the stability of the photocathode-driven system. This work demonstrates the feasibility of poly(4-alkylthiazole)s as an effective alternative to known inorganic semiconductor materials. We highlight the interface alignment for polymer-based photoelectrodes.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235045009
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1021.acsami.0c03975