Back to Search Start Over

Predicting damage initiation in 3D fibre-reinforced composites : the case for strain-based criteria

Predicting damage initiation in 3D fibre-reinforced composites : the case for strain-based criteria

Authors :
Oddy, Carolyn
Eckermann, Tomas
Ekh, Magnus
Fagerström, Martin
Hallström, Stefan
Stig, Fredrik
Oddy, Carolyn
Eckermann, Tomas
Ekh, Magnus
Fagerström, Martin
Hallström, Stefan
Stig, Fredrik
Publication Year :
2019

Abstract

Three dimensional (3D) fibre-reinforced composites have shown weight effi- cient strength and stiffness characteristics as well as promising energy absorp- tion capabilities. In the considered class of 3D-reinforcement, vertical and horizontal weft yarns interlace warp yarns. The through-thickness reinforce- ments suppress delamination and allow for stable and progressive damage growth in a quasi-ductile manner. With the ultimate goal of developing a homogenised computational model to predict how the material will deform and eventually fail under loading, this work proposes candidates for failure initiation criteria. It is shown that the extension of the LaRC05 stress-based failure criteria for unidirectional lami- nated composites, to this class of 3D-reinforced composite presents a number of challenges and leads to erroneous predictions. Analysing a mesoscale rep- resentative volume element does however indicate, that loading the 3D fibre- reinforced composite produces relatively uniform strain fields. The average strain fields of each material constituent are well predicted by an equivalent homogeneous material response. Strain based criteria inspired by LaRC05 are therefore proposed. The criteria are evaluated numerically for tensile, compressive and shear tests. Results show that their predictions for the simulated load cases are qualitatively more reasonable.<br />QC 20191021

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235030071
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.compstruct.2019.111336