Back to Search
Start Over
Monodisperse NaYbF4 : Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties
- Publication Year :
- 2011
-
Abstract
- We report core/shell NaYbF4 : Tm3+/NaGdF4 nanocrystals to be used as probes for bimodal near infrared to near infrared (NIR-to-NIR) upconversion photoluminescence (UCPL) and magnetic resonance (MR) imaging. The NaYbF4 : Tm3+ nanocrystals were previously reported to produce the intense NIR-to-NIR UCPL peaked at similar to 800 nm under excitation at similar to 975 nm. We have found that the growth of a NaGdF4 shell on surface of the NaYbF4 : Tm3+ nanocrystals results in the increase in the intensity of UCPL of Tm3+ ions by about 3 times. Unlike biexponential PL decay of NaYbF4 : Tm3+ nanocrystals, the PL decay of NaYbF4 : Tm3+/NaGdF4 core/shell nanocrystals is single exponential and of longer lifetime due to the suppression of surface quenching effects for Tm3+ PL. The growth of a NaGdF4 shell on surface of the NaYbF4 : Tm3+ nanocrystals also provides high MR relaxivity from paramagnetic Gd3+ ions contained in the shell. The T1-weighted MR signal of the (NaYbF4:2% Tm3+)/NaGdF4 nanoparticles was measured to be about 2.6 mM(-1)s(-1). Due to the combined presence of efficient optical and MR imaging capabilities, nanoprobes based on NaYbF4 : Tm3+/NaGdF4 fluoride nanophosphors can be considered as a promising platform for simultaneous bimodal PL and MR bioimaging.<br />QC 20110616
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1235000279
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1039.c0nr01018a