Back to Search
Start Over
Focused Metabolism of beta-Glucans by the Soil Bacteroidetes Species Chitinophaga pinensis
- Publication Year :
- 2019
-
Abstract
- The genome and natural habitat of Chitinophaga pinensis suggest it has the ability to degrade a wide variety of carbohydrate-based biomass. Complementing our earlier investigations into the hydrolysis of some plant polysaccharides, we now show that C. pinensis can grow directly on spruce wood and on the fungal fruiting body. Growth was stronger on fungal material, although secreted enzyme activity was high in both cases, and all biomass-induced secretomes showed a predominance of beta-glucanase activities. We therefore conducted a screen for growth on and hydrolysis of beta-glucans isolated from different sources. Most noncrystalline beta-glucans supported good growth, with variable efficiencies of polysaccharide deconstruction and oligosaccharide uptake, depending on the polysaccharide backbone linkage. In all cases, beta-glucan was the only type of polysaccharide that was effectively hydrolyzed by secreted enzymes. This contrasts with the secretion of enzymes with a broad range of activities observed during growth on complex heteroglycans. Our findings imply a role for C. pinensis in the turnover of multiple types of biomass and suggest that the species may have two metabolic modes: a "scavenging mode," where multiple different types of glycan may be degraded, and a more "focused mode" of beta-glucan metabolism. The significant accumulation of some types of beta-gluco-oligosaccharides in growth media may be due to the lack of an appropriate transport mechanism, and we propose that this is due to the specificity of expressed polysaccharide utilization loci. We present a hypothetical model for beta-glucan metabolism by C. pinensis that suggests the potential for nutrient sharing among the microbial litter community. IMPORTANCE It is well known that the forest litter layer is inhabited by a complex microbial community of bacteria and fungi. However, while the importance of fungi in the turnover of natural biomass is well established, the role of their bacterial count<br />QC 20190130
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234937217
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1128.AEM.02231-18