Back to Search
Start Over
Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission
- Publication Year :
- 2018
-
Abstract
- Three flux ropes associated with near-Earth magnetotail reconnection are analyzed using Magnetospheric Multiscale observations. The flux ropes are Earthward propagating with sizes from similar to 3 to 11 ion inertial lengths. Significantly different axial orientations are observed, suggesting spatiotemporal variability in the reconnection and/or flux rope dynamics. An electron-scale vortex, associated with one of the most intense electric fields (E) in the event, is observed within one of the flux ropes. This E is predominantly perpendicular to the magnetic field (B); the electron vortex is frozen-in with E x B drifting electrons carrying perpendicular current and causing a small-scale magnetic enhancement. The vortex is similar to 16 electron gyroradii in size perpendicular to B and potentially elongated parallel to B. The need to decouple the frozen-in vortical motion from the surrounding plasma implies a parallel E at the structure's ends. The formation of frozen-in electron vortices within reconnection-generated flux ropes may have implications for particle acceleration. Plain LanguageSummary The release of magnetic energy into particle motion through magnetic reconnection is a key driver of dynamics in the Earth's magnetosphere and other space plasmas. In order to understand how the released magnetic energy is distributed and ultimately heats the particles, a detailed examination of the structures formed by magnetic reconnection is necessary. One common structure produced by reconnection is a twisted magnetic field known as a flux rope. We use new data from the National Aeronautics and Space Administration's Magnetospheric Multiscale satellites to examine both the large-and small-scale properties of three flux ropes associated with a single reconnection event. The results reveal the intrinsic three-dimensional nature of the overall reconnection event, which may stem either from variability at the reconnection site and/or the subsequent dynamics of the structure<br />QC 20181015
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234934390
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1029.2018GL079095