Back to Search
Start Over
Strong inter-conduction-band absorption in heavily fluorine doped tin oxide
- Publication Year :
- 2008
-
Abstract
- The optical, electrical and structural properties of thin. film tin oxide (TO), F-doped tin oxide (FTO; n(F) approximate to 6 x 10(20) cm (3)) and highly F-doped tin oxide (hFTO; n(F) approximate to 10 x 10(20) cm (3)), grown by spray pyrolysis technique, are studied by atomic force microscopy, Hall effect, X-ray. fluorescence and transmission/reflection measurements. The resistivity (rho = 32 x 10 (4) Omega cm for intrinsic tin oxide) shows intriguing characteristics when F concentration n(F) is increased (rho = 6 x 10 (4) Omega cm for FTO but 25 x 10 (4) Omega cm for hFTO) whereas the carrier concentration is almost constant at high F concentration (n(c) approximate to 6 x 10(20) cm (3) for FTO and hFTO). Thus, F seems to act both as a donor and a compensating acceptor in hFTO. The high carrier concentration has a strong effect on the optical band-edge absorption. Whereas intrinsic TO has room-temperature band-gap energy of E-g approximate to 3.2 eV with an onset to absorption at about 3.8 eV, the highly doped FTO and hFTO samples show relatively strong absorption at 2-3 eV. Theoretical analysis based on density functional calculations of FTO reveals that this is not a defect state within the band-gap region, but instead a consequence of a hybridization of the F donor states with the host conduction band in combination with a band. filling of the lowest conduction band by the free carriers. This allows photon-assisted inter-conduction band transitions of the free electrons to energetically higher and empty conduction bands, producing the below-gap absorption peak.<br />QC 20101109 Uppdaterad fraĚŠn submitted till published 20101109.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234880037
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1016.j.apsusc.2008.06.113