Back to Search
Start Over
Sorbing tracer experiments in a crystalline rock fracture at Aspo (Sweden) : 2. Transport model and effective parameter estimation
- Publication Year :
- 2007
-
Abstract
- [1] Transport and retention of sorbing tracers in a single, altered crystalline rock fracture on a 5 m scale is investigated. We evaluate the results of a comprehensive field study ( referred to as Tracer Retention Understanding Experiments, first phase ( TRUE- 1)), at a 400 m depth of the Aspo Hard Rock Laboratory ( Sweden). A total of 16 breakthrough curves are analyzed, from three test configurations using six radioactive tracers with a broad range of sorption properties. A transport- retention model is proposed, and its applicability is assessed based on available data. We find that the conventional model with an asymptotic power law slope of - 3/ 2 ( one- dimensional diffusion into an unlimited rock matrix) is a reasonable approximation for the conditions of the TRUE- 1 tests. Retention in the altered rock of the rim zone appears to be significantly stronger than implied by retention properties inferred from generic ( unaltered) rock samples. The effective physical parameters which control retention ( matrix porosity and retention aperture) are comparable for all three test configurations. The most plausible in situ ( rim zone) porosity is in the range 1% - 2%, which constrains the effective retention aperture to the range 0.2 - 0.7 mm. For all sorbing tracers the estimated in situ sorption coefficient appears to be larger by at least a factor of 10, compared to the value inferred from through- diffusion tests using unaltered rock samples.<br />QC 20100525
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234877625
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1029.2006wr005278