Back to Search Start Over

Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

Authors :
Beurskens, M. N. A.
Frassinetti, Lorenzo
Challis, C.
Osborne, T.
Snyder, P. B.
Alper, B.
Angioni, C.
Bourdelle, C.
Buratti, P.
Crisanti, F.
Giovannozzi, E.
Giroud, C.
Groebner, R.
Hobirk, J.
Jenkins, I.
Joffrin, E.
Leyland, M. J.
Lomas, P.
Mantica, P.
McDonald, D.
Nunes, I.
Rimini, F.
Saarelma, S.
Voitsekhovitch, I.
De Vries, P.
Zarzoso, D.
Beurskens, M. N. A.
Frassinetti, Lorenzo
Challis, C.
Osborne, T.
Snyder, P. B.
Alper, B.
Angioni, C.
Bourdelle, C.
Buratti, P.
Crisanti, F.
Giovannozzi, E.
Giroud, C.
Groebner, R.
Hobirk, J.
Jenkins, I.
Joffrin, E.
Leyland, M. J.
Lomas, P.
Mantica, P.
McDonald, D.
Nunes, I.
Rimini, F.
Saarelma, S.
Voitsekhovitch, I.
De Vries, P.
Zarzoso, D.
Publication Year :
2013

Abstract

The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ∼ 1.5-2, H98 ∼ 1, whereas the hybrid plasmas have βN ∼ 2.5-3, H98 < 1.5. The database study contains both low- (δ ∼ 0.2-0.25) and high-triangularity (δ ∼ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ∼ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density pea<br />QC 20130207

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234812896
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1088.0029-5515.53.1.013001