Back to Search
Start Over
Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes
- Publication Year :
- 2020
-
Abstract
- HLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow up on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.1, the current analysis uncovers seven residues (alpha a1, alpha 157, alpha 196, beta 9, beta 30, beta 57, and beta 70) that are resistant to T1D among subjects with DQ4-, 5-, 6-, and7-resistant DQ haplotypes. These 7 residues form 13 common motifs: 6 motifs are significantly resistant, 6 motifs have modest or no associations (Pvalues >0.05), and 1 motif has 7 copies observed among control subjects only. The motifs "DAAFYDG," "DAAYHDG," and "DAAYYDR" have significant resistance to T1D (odds ratios [ORs] 0.03, 0.25, and 0.18;P= 6.11 x 10(-24), 3.54 x 10(-15), and 1.03 x 10(-21), respectively). Remarkably, a change of a single residue from the motif "DAAYHDG" to "DAAYHSG" (D to S at beta 57) alters the resistance potential, from resistant motif (OR 0.15;P= 3.54 x 10(-15)) to a neutral motif (P= 0.183), the change of which was significant (FisherPvalue = 0.0065). The extended set of linked residues associated with T1D resistance and unique to each cluster of HLA-DQ haplotypes represents facets of all known features and functions of these molecules: antigenic peptide binding, peptide-MHC class II complex stability, beta 167-169 RGD loop, T-cell receptor binding, formation of homodimer of alpha-beta heterodimers, and cholesterol binding in the cell membrane rafts. Identification of these residues is a novel understanding of resistant DQ associations with T1D. Our analyses endow potential molecular approaches to identify immunological mechanisms that control disease susceptibility or resistance to provide novel targets for immunotherapeutic strategies.<br />Funding Agencies|National Institutes of Health/National Institute of Diabetes and Digestive and Kidney DiseasesUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK) [1R56 DK117276, DK63861, DK26190]; European Foundation for the Study of Diabetes Clinical Research Grants Programme 2013; Swedish Child Diabetes Foundation (Barndiabetesfonden); Swedish Research CouncilSwedish Research Council; Linne grant; Skane County Council for Research and Development; Swedish Association of Local Authorities and Regions
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234767094
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.2337.db20-0374