Back to Search Start Over

Development of an adductomic approach to identify electrophiles in vivo through their hemoglobin adducts

Authors :
Carlsson, Henrik
Carlsson, Henrik
Publication Year :
2016

Abstract

Humans are exposed to electrophilically reactive compounds, both formed endogenously and from exogenous exposure. Such compounds could react and form stable reaction products, adducts, at nucleophilic sites in proteins and DNA. The formation of adducts constitutes a risk for effects, such as cancer and contact allergy, and plays a role in ageing processes. Adducts to proteins offer a possibility to measure electrophilic compounds in vivo. Adductomic approaches aim to study the totality of adducts, to specific biomolecules, by mass spectrometric screening. This thesis describes the development and application of an adductomic approach for the screening of unknown adducts to N-terminal valine (Val) in hemoglobin (Hb) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The adductomic approach is based on the FIRE procedure, a modified Edman procedure for the analysis of adducts to N-terminal Val in Hb by LC/MS/MS. The adduct screening was performed by stepwise scanning of precursor ions in small mass increments and monitoring four fragments common for derivatives of detached Val adducts, in the multiple reaction monitoring mode. Samples from 12 smokers/nonsmokers were screened with the adductomic approach, and seven previously identified adducts and 19 unknown adducts were detected. A semiquantitative approach was applied for approximate quantification of adduct levels. A strategy for identifying unknown Hb adducts using adductome LC/MS/MS data was formulated and applied for the identification of unknown adducts. Identifications were based on the observed m/z of precursor ions and retention times combined with databases and Log P calculations. Hypothesized adducts were generated in vitro for comparison and matching with the corresponding unknown adducts. Five identified adducts correspond to the precursor electrophiles ethyl vinyl ketone (EVK), glyoxal, methylglyoxal, acrylic acid, and 1-octen-3-one. These adducts, except the adducts corresponding to glyoxal<br />At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234706099
Document Type :
Electronic Resource