Back to Search Start Over

Visual tree detection for autonomous navigation in forest environment

Authors :
Ali, W
Georgsson, Fredrik
Hellström, Thomas
Ali, W
Georgsson, Fredrik
Hellström, Thomas
Publication Year :
2008

Abstract

This paper describes a classification based tree detection method for autonomous navigation of forest vehicles in forest environment. Fusion of color, and texture cues has been used to segment the image into tree trunk and background objects. The segmentation of images into tree trunk and background objects is a challenging task due to high variations of illumination, effect of different color shades, non-homogeneous bark texture, shadows and foreshortening. To accomplish this, the approach has been to find the best combinations of color, and texture descriptors, and classification techniques. An additional task has been to estimate the distance between forest vehicle and the base of segmented trees using monocular vision. A simple heuristic distance measurement method is proposed that is based on pixel height and a reference width. The performance of various color and texture operators, and accuracy of classifiers has been evaluated using cross validation techniques.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234669880
Document Type :
Electronic Resource