Back to Search Start Over

Tamoxifen, Flaxseed, and the Lignan Enterolactone Increase Stroma- and Cancer Cell-Derived IL-1Ra and Decrease Tumor Angiogenesis in Estrogen-Dependent Breast Cancer

Authors :
Lindahl, Gabriel
Saarinen, Niina
Abrahamsson, Annelie
Dabrosin, Charlotta
Lindahl, Gabriel
Saarinen, Niina
Abrahamsson, Annelie
Dabrosin, Charlotta
Publication Year :
2011

Abstract

The proinflammatory cytokines IL-1 alpha and IL-1 beta promote tumor angiogenesis that might be counteracted by the IL-1 receptor antagonist (IL-1Ra), anakinra, a clinically approved agent. A diet with high amounts of phytoestrogens, such as flaxseed (Flax), genistein (GEN), and the mammalian lignan enterolactone (ENL), may affect breast cancer progression in a similar fashion as the antiestrogen tamoxifen. Both cancer cells and tumor stroma may be targets for cancer therapy. By using microdialysis in a model of human breast cancers in nude mice, we could perform species-specific analyses of released proteins in the microenvironment. We show that tumors treated with tamoxifen and fed Flax or ENL exhibited decreased in vivo release of IL-1 beta derived from the murine stroma and decreased microvessel density whereas dietary GEN had no effects. Cancer cell-released IL-1Ra were approximately 5 times higher than stroma-derived IL-1Ra. Tamoxifen, Flax, and ENL increased IL-1Ra levels significantly whereas GEN did not. The tumor stroma contained macrophages, which expressed the estrogen receptor. In vitro, estradiol decreased IL-1Ra released from breast cancer cells and from cultured macrophages. IL-1Ra decreased endothelial cell proliferation significantly in vitro whereas breast cancer cell proliferation was unaffected in presence of estradiol. Finally, IL-1Ra therapy of tumor-bearing mice opposed estrogen-dependent breast cancer growth and decreased angiogenesis. We conclude that the release of IL-1s both by cancer cells and the stroma, where macrophages are a key component, may offer feasible targets for antiestrogen therapy and dietary interventions against breast cancer.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234669537
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1158.0008-5472.CAN-10-2289