Back to Search
Start Over
Electrode Surface Composition of Dual-Intercalation, All-Graphite Batteries
- Publication Year :
- 2017
-
Abstract
- Dual-intercalation batteries implement graphite electrodes as both cathodes and anodes and offer high specific energy, inexpensive and environmentally sustainable materials, and high operating voltages. Our research investigated the influence of surface composition on capacities and cycling efficiencies of chemically functionalized all-graphite battery electrodes. We subjected core-shell spherical particles and synthetic graphite flakes to high-temperature air oxidation, and hydrogenation to introduce, respectively, -OH, and -H surface functional groups. We identified noticeable influences of electrode surface chemistry on first-cycle efficiencies and charge storage densities of anion and cation intercalation into graphite electrodes. We matched oxidized cathodes and hydrogenated anodes in dual-ion batteries and improved their overall performance. Our approach provides novel fundamental insight into the anion intercalation process and suggests inexpensive and environmentally sustainable methods to improve performance of these grid-scale energy storage systems.<br />Funding Agencies|U.S. Army Research LaboratoryUnited States Department of DefenseUS Army Research Laboratory (ARL); College Qualified Leaders (CQL) Army Educational Outreach Program
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234581597
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.3390.c3010005