Back to Search Start Over

Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells

Authors :
Monemar, Bo
Paskov, Plamen
Bergman, JP
Pozina, Galia
Darakchieva, Vanya
Iwaya, M
Kamiyama, S
Amano, H
Akasaki, I
Monemar, Bo
Paskov, Plamen
Bergman, JP
Pozina, Galia
Darakchieva, Vanya
Iwaya, M
Kamiyama, S
Amano, H
Akasaki, I
Publication Year :
2002

Abstract

In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells (MQWs) with heavily Si-doped barriers, grown with Metal Organic Vapor Phase Epitaxy (MOVPE) at about 800(0)C, have been studied in detail with optical spectroscopy. Such structures are shown to be very sensitive to a near surface depletion field, and if no additional layer is grown on top of the MQW structure the optical spectra from the individual QWs are expected to be drastically different. For a sample with 3 near surface QWs and Si-doped barriers, only the QW most distant from the surface is observed in photoluminescence (PL). The strong surface depletion field is suggested to explain these results, so that the QWs closer to the surface cannot hold the photo-excited carriers. A similar effect of the strong depletion field is found in an LED structure where the MQW is positioned at the highly doped n-side of the pn-junction. The internal polarization induced electric field in the QWs is also rather strong, and incompletely screened by carriers transferred from the doped barriers. The observed PL emission for this QW is of localized exciton character, consistent with the temperature dependence of peak position and PL decay time. The excitonic lineshape of 35-40 meV in the QW PL is explained as caused by a combination of random alloy fluctuations and interface roughness, the corresponding localization potentials are also responsible for the localization of the excitons in the low temperature range (

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234311804
Document Type :
Electronic Resource