Back to Search
Start Over
The global methane budget 2000-2012
- Publication Year :
- 2016
-
Abstract
- The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (similar to biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003-2012 decade, global methane emissions are estimated by top-down inversions at 558 TgCH(4) yr(-1), range 540-568. About 60% of global emissions are anthropogenic (range 50-65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scen<br />Funding Agencies|Swiss National Science Foundation; NASA [NNX14AF93G, NNX14AO73G]; National Environmental Science Program - Earth Systems and Climate Change Hub; European Commission [283576, 633080]; ESA Climate Change Initiative Greenhouse Gases Phase 2 project; US Department of Energy, BER [DE-AC02-05CH11231]; FAO member countries; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [2-1502]; ERC [322998]; NERC [NE/J00748X/1]; Swedish Research Council VR; Research Council of Norway [244074]; NSF [1243232, 1243220]; National Science and Engineering Research Council of Canada (NSERC); Chinas QianRen Program; CSIRO Australia; Australian Bureau of Meteorology; Australian Institute of Marine Science; Australian Antarctic Division; NOAA USA; Meteorological Service of Canada; National Aeronautic and Space Administration (NASA) [NAG5-12669, NNX07AE89G, NNX11AF17G, NNX07AE87G, NNX07AF09G, NNX11AF15G, NNX11AF16G]; Department of Energy and Climate Change (DECC, UK) [GA01081]; Commonwealth Scientific and Industrial Research Organization (CSIRO Australia); Bureau of Meteorology (Australia); Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234293687
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.5194.essd-8-697-2016