Back to Search Start Over

Gradient-Based Recursive Maximum Likelihood Identification of Jump Markov Non-Linear Systems

Authors :
Braga, Andre R.
Fritsche, Carsten
Gustafsson, Fredrik
Bruno, Marcelo G. S.
Braga, Andre R.
Fritsche, Carsten
Gustafsson, Fredrik
Bruno, Marcelo G. S.
Publication Year :
2017

Abstract

This paper deals with state inference and parameter identification in Jump Markov Non-Linear System. The state inference problem is solved efficiently using a recently proposed Rao-Blackwellized Particle Filter, where the discrete state is integrated out analytically. Within the RBPF framework, Recursive Maximum Likelihood parameter identification is performed using gradient ascent algorithms. The proposed learning method has the advantage over (online) Expectation Maximization methods, that it can be easily applied to cases where the probability density functions defining the Jump Markov Non-Linear System are not members of the exponential family. Two benchmark problems illustrate the parameter identification performance.<br />Funding Agencies|CNPq - Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; CISB - Centro de Pesquisa e Inovacao Sueco-Brasileiro and Saab AB; Vinnova Industry Excellence Center ELLIIT at Linkoping University

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234242455
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.23919.ICIF.2017.8009651